Google’s New AI-Powered Customer Service Tools Spark Back-to-Back Class Action Lawsuits

Google’s New AI-Powered Customer Service Tools Spark Back-to-Back Class Action Lawsuits

Zion Mercado 

 

Google recently began rolling out “human-like generative AI powered” customer service tools to help companies enhance their customer service experience.[1] This new service is known as the “Cloud Contact Center AI,” and touts a full package of customer service-based features to help streamline customer service capabilities.[2] Companies who utilize the new service  can create virtual customer service agents, access AI-generated insights providing feedback on customer service interactions, store and manage data on a specialized “Contact Center AI Platform,” and consult with Google’s team of experts on how to improve the AI-integrated systems.[3] However, one key feature that has recently come into controversy is the ability for customers to utilize real-time AI-generated responses to customer inquiries which can then be relayed back to the customer by a live agent.[4] This is known as the “Agent Assist” feature.

Agent Assist operates by “us[ing] machine learning technology to provide suggestions to . . . human agents when they are in a conversation with a customer.”[5] These suggestions are based on the company’s own data and conversations.[6] Functionally, when Agent Assist is in use, there are two parties to the conversation: the live customer service agent, and the customer. The AI program listens in and generates responses in real time for the live customer service agent. Some have argued that this violates California’s wiretapping statute by alleging that the actions of Google’s AI program, which is nothing more than a complex computer program, are attributable to Google itself.[7] Those who have done so have alleged that Google, through its AI-integrated services, has been listening in on people’s conversations without their consent or knowledge.[8]

The wiretapping statute in question is a part of the California Invasion of Privacy Act (“CIPA”), and prohibits the intentional tapping, reading, or any other unauthorized connection, whether physically or otherwise, with any communication being transmitted via line, wire, cable, or instrument without the consent of all parties to the communication.[9] It is also unlawful under the statute to communicate any information so obtained or to aid another in obtaining information via prohibited means.[10]

In 2023, a class action lawsuit was filed against Google on behalf of Verizon customers who alleged that Google “used its Cloud Contact Center AI software as a service to wiretap, eavesdrop on, and record” calls made to Verizon’s customer service center.[11] In the case, District Court Judge Rita F. Lin granted Google’s motion to dismiss on grounds that the relationship between Google and Verizon and the utilization of the Cloud Contact Center AI service fell squarely within the statutory exception to the wiretapping statute.[12] Now, the wiretapping statute does contain an explicit exception for telephone companies and their agents, which is the exception upon which Judge Lin relied; however, that exception is narrowed to such acts that “are for the purpose of construction, maintenance, conduct or operation of the services and facilities of the public utility or telephone company.”[13]

Continue reading

Artificial Intelligence Liability

Artificial Intelligence Liability

By Susan-Caitlyn Seavey

1. Who is Responsible for Harm flowing from AI?   

Most people can easily recognize the immense impact technological developments have had in the recent decade, affecting practically every sector. While the laws and regulations governing our society have somewhat lagged behind these technological advances, we have still managed to create a framework that seems to effectively govern these modern tools. With the implementation and widespread usage of AI, our current legal and regulatory parameters do not neatly fit anymore. We are left with questions about who is ultimately responsible for harms that stem from AI. The issue of liability does not likely have a one size fits all solution, and our government and courts are working to understand and produce the new standards and guidelines AI requires. Stanford Law Fellow, Thomas Weber, says it well: “Generative AI is developing at a stunning speed, creating new and thorny problems in well-established legal areas, disrupting long-standing regimes of civil liability—and outpacing the necessary frameworks, both legal and regulatory, that can ensure the risks are anticipated and accounted for.”[1] Until there is substantial court precedent and more promulgated AI laws, scholars and professionals are limited to discussing different theories of liability that may be suitable for AI, such as strict liability and negligence law.

            In 2023, a man in Belgium ended his life after apparently becoming emotionally dependent on an AI-powered chatbot, leaving behind his wife and two children.[2] Also in 2023, Stanford’s Director of Law, Science and Technology, Professor Lemley, asked chatbot GPT-4 to provide information about himself.[3]> The algorithm offered defamatory information, believing Professor Lemley’s research to actually be a misappropriation of trade secrets.[4] In both of these cases, it is unclear who would and/or could be held liable for the death of the father and for the defamatory information. Traditional liability is long-established with laws and regulations in place and ample case law to support the structure we have created for it. However, AI transcends many of the boxes we have fit other technology into, including the liability framework.

For Professor Lemley to establish the requisite elements of a defamation claim, he would have to prove the bad actor’s intent to defame; the standard requires that a reasonable person should have known that the information was false or exhibited a reckless disregard as to the truth or falsity of the published statement.[5] But how does one show that a robot possesses such requisite intent? It would follow that liability may fall to the developers if intent cannot be apportioned to the AI technology at issue. The apparent irrelevance of intent with AI requires an alternative option to account for liability. A guide of best practices may be helpful to direct AI. “Professor Lemley suggests [that by] implementing best practices, companies and developers could shoulder less liability for harms their programs may cause.”[6] While not specifically broken down, this concept is supported by the Cybersecurity and Infrastructure Security Agency’s (CISA) work to develop “best practices and guidance for secure and resilient AI software development and implementation.”[7]

Continue reading

Addressing the Vectors for Attack on Artificial Intelligence Systems Used in Clinical Healthcare through a Robust Regulatory Framework: A Survey

PDF Link

Addressing the Vectors for Attack on Artificial Intelligence Systems Used in Clinical Healthcare through a Robust Regulatory Framework: A Survey

By Benjamin Clark

Introduction and Overview

Artificial intelligence has captivated the current interest of the general public and academics alike, bringing closer attention to previously unexplored aspects of these algorithms, such as how they have been implemented into critical infrastructure, ways they can be secured through technical defensive measures, and how they can best be regulated to reduce risk of harm. This paper will discuss vulnerabilities common to artificial intelligence systems used in clinical healthcare and how bad actors exploit them before weighing the merits of current regulatory frameworks proposed by the U.S. and other nations for how they address the cybersecurity threats of these systems.

Primarily, artificial intelligence systems used in clinical research and healthcare settings involve either machine learning or deep learning algorithms.[1] Machine learning algorithms automatically learn and improve themselves without needing to be specifically programmed for each intended function. [2] However, these algorithms require that input data be pre-labeled by programmers to train algorithms to associate input features and best predict the labels for output, which involves some degree of human intervention.[3] The presence of humans in this process is referred to as “supervised machine learning” and is most often observed in systems used for diagnostics and medical imaging, in which physicians set markers for specific diagnoses as the labels and algorithms are able to categorize an image as a diagnosis based off the image’s characteristics.[4] Similarly, deep learning is a subset of machine learning characterized by its “neural network” structure in which input data is transmitted through an algorithm through input, output, and “hidden” layers to identify patterns in data.[5] Deep learning algorithms differ from those that utilize machine learning in that they require no human intervention after being trained; instead, deep learning algorithms process unlabeled data by determining what input is most important to create its own labels.[6]

Continue reading

U.S. v. Google LLC: An overview of the landmark antitrust case and its impact on consumer privacy, A.I., and the future of the internet.

U.S. v. Google LLC: An overview of the landmark antitrust case and its impact on consumer privacy, A.I., and the future of the internet.

By William Simpson

 

I. Intro

The ongoing antitrust case against Google alleging anticompetitive conduct relating to the company’s search engine could, in the near term, result in a breakup of the company or, alternatively, indicate that existing antitrust law is ill-suited to engage outsize market shares in the digital economy.[1] On a broader scale, this case could have major effects on consumer privacy, A.I., and the character of the internet going forward. The consequences could be, in a word, enormous.

 

II. Background

 

In October 2020, the Department of Justice (DOJ) filed a complaint against Google, alleging that Google violated the Sherman Antitrust Act[2] when it:

  • Entered into exclusivity agreements that forbid preinstallation of any competing search service;
  • Entered into tying arrangements that force preinstallation of its search applications in prime locations on mobile devices and make them undeletable;
  • Entered into long-term agreements with Apple that require Google to be the default general search engine on Apple’s popular Safari browser and other Apple search tools; and
  • Generally used monopoly profits to buy preferential treatment for its search engine on devices, web browsers, and other search access points, creating a continuous and self-reinforcing cycle of monopolization.[3]

The DOJ’s complaint concludes that such practices harm competition and consumers, inhibiting innovation where new companies cannot “develop, compete, and discipline Google’s behavior.”[4] In particular, the DOJ argues that Google’s conduct injures American consumers who are subject to Google’s “often-controversial privacy practices.”[5]

In response, Google refutes the DOJ’s argument, deeming the lawsuit “deeply flawed.”[6] “People use Google because they choose to,” says a Google spokesperson, “not because they’re forced to or because they can’t find alternatives.”[7] Challenging the DOJ’s claims, Google asserts that any deals that it entered into are analogous to those a popular cereal brand would enter into for preferential aisle placement.[8]

Continue reading

Generative AI Algorithms: The Fine Line Between Speech and Section 230 Immunity

Generative AI Algorithms: The Fine Line Between Speech and Section 230 Immunity

 By Hannah G. Babinski

ABSTRACT

Russian-American writer and philosopher Ayn Rand once observed, “No speech is ever considered, but only the speaker. It’s so much easier to pass judgment on a man than on an idea.”[1] But what if the speaker is not a man, woman, or a human at all? Concepts of speech and identities of speakers have been the focal points of various court cases and debates in recent years. The Supreme Court and various district courts have faced complex and first-of-their-kind questions concerning emerging technologies, namely algorithms and recommendations, and contemplated whether their outputs constitute speech on behalf of an Internet service provider (“Internet platform”) that would not be covered by Section 230 of the Communications Decency Act (“Section 230”).  In this piece, I will examine some of the issues arising from the questions posed by Justice Gorsuch in Gonzalez v. Google, LLC, namely whether generative AI algorithms and their relative outputs constitute speech that is not immunized under Section 230. I will provide an overview of the technology behind generative AI algorithms and then examine the statutory language and interpretation of Section 230, applying that language and interpretive case law to generative AI. Finally, I will provide demonstrative comparisons between generative AI technology and human content creation and foundational Copyright Law concepts to illustrate how generative AI technologies and algorithmic outputs are akin to unique, standalone products that extend beyond the protections of Section 230.

 

Continue Reading